Massively Parallel Latent Semantic Analyses using a Graphics Processing Unit
نویسندگان
چکیده
Latent Semantic Indexing (LSA) aims to reduce the dimensions of large Term-Document datasets using Singular Value Decomposition. However, with the ever expanding size of data sets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. The Graphics Processing Unit (GPU) can solve some highly parallel problems much faster than the traditional sequential processor (CPU). Thus, a deployable system using a GPU to speedup large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a computer cluster. Due to the GPU’s application-specific architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We present a parallel LSA implementation on the GPU, using NVIDIA® Compute Unified Device Architecture and Compute Unified Basic Linear Algebra Subprograms. The performance of this implementation is compared to traditional LSA implementation on CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1000x1000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran five to six times faster than the CPU version. The large variation is due to architectural benefits the GPU has for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.
منابع مشابه
Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملEfficient Probabilistic Latent Semantic Indexing using Graphics Processing Unit
In this paper, we propose a scheme to accelerate the Probabilistic Latent Semantic Indexing (PLSI), which is an automated document indexing method based on a statistical latent semantic model, exploiting the high parallelism of Graphics Processing Unit (GPU). Our proposal is composed of three techniques: the first one is to accelerate the Expectation-Maximization (EM) computation by applying GP...
متن کاملParallel Implementations of Probabilistic Latent Semantic
Probabilistic Latent Semantic Analysis (PLSA) has been successfully applied to many text mining tasks such as retrieval, clustering, summarization, etc. PLSA involves iterative computation for a large number of parameters and may take hours or even days to process a large dataset, thus speeding up PLSA is highly motivated in the domain of text mining. Recently, the general purpose graphic proce...
متن کاملMassively Parallel Genetic Algorithm – Pattern Search for Nonlinear Optimization with GPU Computing
This paper presents a massively parallel Genetic Algorithm – Pattern Search (GA-PS) with graphics hardware acceleration on bound constrained nonlinear optimization problems. The objective of this study is to determine the effectiveness of using Graphics Processing Units (GPU) as a hardware platform for Genetic Algorithms (GA). The global search of the GA is enhanced by a local Pattern Search (P...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008